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SUMMARY

A simple method of whole-mount radioautography is devised to investigate aspects of the
cell cycle during metamorphosis in the epidermis of the milkweed bug, Oncopeltus. Tritiated
thymidine is used to indicate DNA synthesis. As the label only lasts in the insect for about 2 h,
a wave of labelled cells passes through the different phases of the cell cycle. The S period is
found to overlap with an exceptionally long prophase and there is thus no Gt period. The
length of prophase (408 ±10 min) is estimated from a plot of the fraction of labelled prophases
against time after injection of label. By an equivalent method the length of the S period is
found to be 289! 12 min. No labelled cells divide again until about 24 h after the previous
mitosis, when some cells embark on a second mitosis. The minimum interphase (GJ period
is approximately 16 h. In the area studied, the cell number more than doubles during the
proliferative mitoses; and it is thus possible, but not certain, that every cell divides at least
once.

Fifth-stage larvae injected during the differentiative divisions (which are involved in the
development of dense hairs) show that each of the three kinds of differentiative divisions has
its own peculiar timing. The timing of the very first division, that of the epidermal cell which
will become the hair mother cell, suggests that the cell is already different from its progenitors
prior to prophase.

INTRODUCTION

Wigglesworth's studies (1933, 1937, 1940, 1963) on the epidermis of Rhodnius have
painted a detailed picture of the normal course of mitotic events during the larval
and metamorphic moults. Wigglesworth (1964) has also shown that epidermal mitoses
are in part a homeostatic response to cell separation. Where cells are dense, as in an
unfed Rhodnius caused to moult by parabiosis, many epidermal cells survive from one
larval instar to the next, and appear to undergo metamorphosis without cell division
(Wigglesworth, 1942).

The likelihood of observing any mitoses depends on the length of the mitotic pro-
cess itself, and with the exception of the grasshopper neuroblast (Carlson & Hollaender,
1948) and the Drosophila embryo (Huettner, 1933; Rabinowitz, 1941) little is known
of this or other details of the somatic cell cycle in any insect. Some information on the
cell cycle in moulting 5th-stage larvae of the Lygaeid bug, Oncopeltus, is presented in
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this paper. Observations have been made on the time course of the differentiative
divisions concerned in the development of hairs (compare Lawrence, 1966).

MATERIAL AND METHODS

A stock culture of Oncopeltus fasciatus Dall was maintained in a dark incubator at
29-5 ±0-5 °C. At this temperature the 5th-larval stage lasts for approximately 150 h.

Whole-mount radioautography

Fifth-stage larvae (wt 50-70 mg) were injected through the metathoracic legs with
1 fie (6-05 c/mM, Schwarz Bioresearch) of tritiated thymidine in 1 /tl of distilled water.
The injection was performed at room temperature, and the insects were then returned
to the incubator at 29-5 °C to be kept for fixation at various times. This treatment had
no detectable effects on control insects, which developed and reproduced normally.
No attempt was made to control for possible circadian rhythms in cell cycles, but
consistent results were obtained with material fixed at very different times of the day.

The abdominal integument was separated from viscera and fat body, and the base-
ment membrane removed. The integument was then fixed for 1 h in Carnoys fluid,
hydrated and after warming in water, was dipped once into Kodak NTB 3 emulsion.
The integument was then placed on a metal mesh for desiccation and exposure for
2 weeks. Finally, the preparation was developed and fixed, stained in Hansen's
trioxyhaematein for 1 min, dehydrated and mounted. Because of local separation be-
tween emulsion and epidermis, labelling was not always present over all the integument;
however, large areas of consistently labelled nuclei were found (Fig. 7). The labelling
was usually light enough to permit detailed examination of the nucleus under the
exposed emulsion and background was typically very low (about 3 grains per nucleus).
Sometimes in areas of thick emulsion, the background was high, but no areas were
used for counts where this could give rise to any doubts as to the status of nuclei.
Labelling was found only over nuclei, or when over metaphase or telophase figures,
only over chromosomes (Fig. 8).

The recognition of prophase and telophase is necessarily somewhat subjective.
Nuclei were scored as being in prophase when the chromosomes were visible as fine
threads, and the nuclei appeared granular in optical section. Often the chromatin was
shrunken like a ball of wool and was surrounded by a clear halo (p, Fig. 9). In fact,
90 % of prophases were in this condition, and only the remaining 10 % could be
classed as late prophases; that is the chromosomes were relatively short and fat and
visible as individual organelles (p, Fig. 10 A).

During the moult the cell number is increased by a wave of proliferative divisions,
which begin at about 40 h after the previous ecdysis, peak at 50 h when the mitotic
index may reach 20 %, and continue until 90 h. These divisions were studied in insects
injected at about 50 h after ecdysis. The differentiative divisions, which are found from
70 to 95 h, were studied in insects injected at about 80 h. These peak times were
chosen to ensure, as far as possible, even distribution of cells throughout the various
phases of the cell cycle.
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Measurement of prophase and S by proportion

The estimation of prophase and period of DNA synthesis (S period) from fractions
of labelled cells measured at different times after injection of label is possible because,
in Oncopeltus, these periods coincide for part of their duration. Two assumptions were
made: (i) that the length of prophase is constant in the animals tested; and (ii) that
the rate of cells entering prophase and the S period is constant for each of the insects
over the duration of the labelling time.

As long as label is available, let p be the proportion of prophase cells that are
labelled, A be the length of prophase (a constant), Sp be the length of time that
prophase overlaps with the S period (a constant), and t be the time between injection
of label and fixation. Thenp is given by

P A ' (see Fig. 1) (i>
as long as t < A - Sp; and p = 1, when t > A - Sp.)

Thus when p is plotted against t the graph will be a straight line with the intercept
at t = o of Sp/A, and slope of if A. Sp/A and if A can be estimated from the linear
regression of p on t and thus Sp and A can be calculated.

Metaphase
Interphase Prophase J

S-period

Fig. 1. The different periods in mitosis.

Similarly, when the label runs out and unlabelled cells begin to enter prophase, at
time tlt p is given by

p = A—|~y as long as t > ^ > A-Sp. (2)

Hence from equations (1) and (2), when the label is no longer available, and unlabelled
prophase cells are now appearing once again, the negative slope, i/A, is the same as
the positive slope when the label is available.

The mean time, tlt at which unlabelled cells begin to enter prophase, is given by
the intersection of equations (1) and (2).

As the 5 period also overlaps with interphase a comparable method can be used to
estimate the period of overlap and hence the length of the S period itself.

If q is the true proportion of labelled cells that are in interphase and £< is the
length of time that interphase overlaps with the DNA synthetic or S period (a constant),
as S = Sp + Sit q is given by

therefore - = i+^f^. (3)
q b
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Unfortunately, when readings of the proportion of labelled interphases were made
it was found impossible to classify some cells with certainty. A method was therefore
devised by Dr John Stewart of the Department of Genetics, Cambridge, to make the
best estimates from this data. Suppose that the labelled cells are divided into three
groups: let qs equal the proportion of labelled cells certainly in interphase; let qu equal
the proportion of cells for which classification is uncertain; then i — (qs + qu) is the
proportion of cells seen to be in prophase.

In this case i/q will lie between ijqs and i/(<?8+ <?„)•
Suppose that

- = r, — = r and = r,,.
9 9s 9s + 9u

"We may then suppose that r = rs + u(ru—rs), where u is a constant between o and i,
and is related to the proportion of unclassifiable cells which are in fact interphase.
Hence from equation (3):

therefore -^—- plotted against -§—-
op +1 op +1

will be a straight line with intercept i/5< and slope of u. From the regression equations
11 Si and u can be estimated. The value of Sp is calculated from equations (1) and (2)
and substituted in (4).

Cell counts

A tergal area was chosen for this quantitative study (the central region of the third
abdominal tergite) because, not only does it show no special growth associated with'
metamorphosis, but also the adult has very few hairs in this region. The average cell
density was measured in individuals fixed before (o h) and after (100 h) cell division,
by counting cells in fields selected at random within the area. To correct for cuticular
expansion, which occurs throughout the growth period, the third tergites of 20 5th-
stage larvae were drawn with the camera lucida before and after proliferative cell
divisions. The average increase in this area was found to be 54 ± 2 %.

Confidence limits

When confidence limits are given they represent the standard error of the mean.

RESULTS

Relative increase in cell number of tergites

The cell density was found to increase from 10800 ± 65/mm2 to 15 200 ± ioo/mm2,
which, when corrected for cuticular expansion of this area (54 ± 2 %) amounted to a
relative increase of cell number from 1 to 2-17. As the only dying cells seen in insects



Mitosis in Oncopeltus 395

fixed throughout the mitotic period were invariably associated with differentiating
bristles or hairs this ratio can be used to estimate the number of mitoses. Each tergal
cell therefore undergoes an average of about one division during the metamorphic
moult. It is convenient that in Oncopeltus, unlike Rhodnius (Wigglesworth, 1942),
most cell death occurs close to, or after, the adult ecdysis.

Mitotic index

A quantitative survey of the mitotic index in samples fixed at different ages was
made (compare Guillaume, 1961). This study gave no information about the real
variation of the mitotic index during development of an individual, because of the
large and unknown variance in the developmental states of the insects used. This
problem can only be overcome in relatively synchronous cultures of known variance
in developmental stage.
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Fig. 2. The proportion of labelled prophases from all prophases against time after
injection. The slopes for the rising and falling parts of the graph were calculated from
the regression equations"(the two points of complete prophase labelling were used in
both calculations). Each point was derived from counts made on two or three insects.

The length of prophase

Insects fixed at various times between 15 and 180 min after injection of thymidine
had label only over interphase and prophase nuclei. Figure 2 plots the proportion of
all prophase which are labelled against time after injection of labelled thymidine. The
very high proportion of labelled prophase cells after only 15 min, and the slow rise of
the graph show that a considerable fraction of prophases are incorporating tritiated
thymidine. The 5 period thus overlaps into prophase. If prophase is of one length in
all the animals tested and if there are no sudden fluctuations in the rate of entry of
cells into prophase in each of the experimental insects, then the proportion of labelled
prophases should rise linearly. The points do fall on a good straight line.

By 180 min all the prophases are labelled in some groups. The proportion of
labelled prophases begins to fall once again at a linear rate: the tritiated thymidine



P. A. Lawrence

is now no longer effectively available and unlabelled cells are now entering prophase
as labelled cells leave it. The slopes of the ascending and descending portions of the
graph should be the same within experimental error, and indeed by calculation were
found to be 0-234 i 0-017 and 0-247 i 0-007 respectively. These two slopes were there-
fore pooled and the result (0-245 ± °-oo6) used to calculate the length of prophase,
which is equal to the mean time taken for the proportion of labelled prophase cells to
rise from o to 1, and was found to be 408 ±10 min (see Methods).

Figure 2 can also be used to calculate the proportion of labelled prophases at zero
time (55 %) which is equal to the proportion of prophase which is in the 5 period.
Sv is thus 226 ± 6 min.

o
X

0 1 2
(r .-r .

Fig. 3. Graph which allows the calculation of the constants S( (period of DNA synthesis
in interphase) and u (proportion of cells of doubtful classification which were, in fact,
interphase). For derivation of this straight-line equation and meaning of symbols see
Methods. Each point was derived from counts made on two or three insects.

As the G2 in mammalian cells can be defined as the period intervening between the
end of DNA synthesis and the beginning of cytologically recognizable prophase
(compare Howard & Pelc, 1953) there is clearly no corresponding interval in these
Oncopeltus cells.

The length of the S period

Similar measurements of proportion allow for an estimate of the length of 5, as
fortunately a small proportion of interphase cells also incorporate label. The certain
distinction of interphase labelled cells (partly because of the overlying grains) was
somewhat more difficult and cells were separated into three classes; labelled prophases,
labelled interphases and labelled cells of uncertain stage. Using Stewart's formula
(see Methods) it was possible to plot these figures in such a way as to allow for this
uncertain class (Fig. 3) and make the best estimate of S from this data and from Fig. 2.



Mitosis in Oncopeltus 397

From Fig. 3, the intercept (i/5<) was found to be 1-58 ± 0-24. Sit the period of
overlap of DNA synthesis into interphase, was therefore equal to 63 ± 10 min. DNA
synthesis extends into prophase for the period Sp (226 ± 6 min). Adding S{ and Sp

and pooling the errors, the 5 period emerges as being 289 + 12 min long.
The slope (u) was calculated to be i-oo ± 0-03. There is thus internal evidence that

all cells for which classification was difficult were in fact interphases. Rejection of this
class of cells would therefore have given a serious underestimate of the true proportion
of labelled interphases.
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Fig. 4. Proportion of labelled metaphases against time after injection of label. The
time between the 0-50 rising and falling sections of the graph is approximately equal
to the length of the S period plus availability time of the thymidine. Each point was
derived from counts made on two or three insects.

The figure of 289 min for the S period gains support from the proportion of
labelled metaphases (Fig. 4). By 180 min after injection approximately 50 % of meta-
phases are labelled. No metaphases are found labelled until 180 min, when the rise
is extremely rapid. After about 540 min the proportion of metaphases begins to decline
again, and reaches zero. The period intervening between the 50 % point on the rising
part of the curve and the 50 % point on the falling part is equal to the length of S
plus the availability time for thymidine (determined below as approximately 130 min).
From Fig. 4 it is clear that this period is about 390 min which allows an estimate for 5
of about 260 min, which is quite close to the estimate by proportion.

Persistence of label in the insect

The time, tt (see Methods) when unlabelled cells begin to enter prophase, was
estimated from Fig. 2 as being 190 min. These unlabelled cells have already passed
through the period of S in interphase (St) which is equal to 63 min. The label must
have been available for approximately 130 min. During this time the thymidine is
broken down or excreted by the insect. Coinciding with these proliferative divisions
the insect is excreting urine at a high rate (Lawrence, 1965).
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Metaphase, anaphase and tehphase

The labelling of these short stages is not consistent. It is common to see labelled
anaphases or sometimes even early telophases adjacent to unlabelled metaphases in
preparations fixed at 180 min (compare Fig. 7). Clearly, the time taken for individual
cells to pass through prophase varies. This inconsistency prohibits determination of
the lengths of these short phases directly from the radioautographs. However, the
mean length of prophase has been quite accurately determined as 408 ±10 min, and
this figure can be used to calculate the lengths of the other mitotic phases with some
precision. From a count of randomly selected areas of control animals of 2500 mitotic
cells 88-7 % were in prophase, 29 % were in metaphase, 2-3 % in anaphase and 6-i %
in telophase. Assuming random distribution of cells throughout the mitotic cycle,
which is almost certainly achieved when such a large number is used, the lengths of
metaphase, anaphase and telophase are 13, 11 and 28 min respectively. Mitosis thus
takes an average of 460 min.

The length of interphase

In insects fixed between 10 and 20 h after injection all labelled cells are found to be
in interphase pairs (Fig. 9), even though the proportion of dividing cells may reach
15%. Clearly the population of cells dividing at this time is distinct from the population
which was in mitosis at the time of injection. The minimum time which may intervene
between the end of S and the beginning of the next round of mitosis, is 20 h. The
Gx period is thus at least 15 b (Fig. 5). The Gx period, although typical, is not im-
mutable for, in a burnt area of an insect fixed 20 h after injection, where active wound-
healing was present, labelled mitoses were seen.

Insects fixed at 22! h were different, and showed a large number of labelled pro-
phases; no metaphase, anaphase or telophase stages were labelled. Sometimes both
of a pair of labelled sister cells were in prophase, but more often one was in prophase
and the other in interphase. These second divisions were particularly common in the
intersegmental membranes; over the general surface of the segment most of the
labelled cells remained in interphase.

The two groups of results restrict the normal minimum G± to between 15 b and
17! h, a conclusion which is confirmed by insects fixed 26 h after injection which
showed all stages of mitosis labelled. As the S period overlaps into prophase for about
3I h the total cell cycle time estimated from these experiments must lie between 23!
and 26^ h. Information on the cell cycle is summarized in Fig. 5.

The presence of undivided pairs of cells in insects fixed at 22 | h suggested that
many cells do not pass through another cell cycle. This impression was substantiated
by a group of insects injected at 41 h after moulting and fixed 44 h later. In this group,
although some labelled cells were dividing, most labelled cells were in interphase,
and many were still in isolated pairs. These pairs were the daughter cells of a single
division, and as this experiment (injected 41 h, fixed 85 h after the moult) spans most
of the time available for proliferative divisions, it suggests that many cells divide but
once during the moult. This conclusion is consistent with the small total increase in
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cell number during the proliferative cell divisions, and the lack of dying cells at this
time. Clearly, other regions which exhibit considerable growth during the metamorphic
moult, for instance the posterior margin of the third sternite of females, show a large
multiplication of cell number and here consecutive cell divisions must occur. In slides
prepared from animals 44 h after injection isolated pairs of labelled cells were not found
in this area, and cell division persists here when it has ceased elsewhere in the abdomen.

226 mln

408
Metaphase

Anaphase
Telophase

1420

Fig. 5. Summary of cell cycle of the proliferative divisions.

Differentiative divisions

As the proliferative divisions wane, new types of cell divisions are found in the
epidermis. These are the differentiative cell divisions involved in hair formation
(Lawrence, 1966). Radioautographs prepared from insects labelled at about 70 h after
the ecdysis, have revealed differences in the timing of these mitoses. Figure 6 sum-
marizes the cell lineage of a hair.

In insects fixed at 120 min after injection, the epidermal cells and the hair mother
cells I and II are labelled only in prophase, and interphase. However, the divisions of
the accessory mother cell include labelled metaphases, anaphases and telophases.
Certainly, the time intervening between S and telophase is much shorter for the
vertical divisions of this cell.

Insects fixed at 135 min amplify the above conclusions; for some labelled accessory
mother cells have now reached interphase, and, moreover, whereas the epidermal
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cells are still labelled only in prophase and interphase, the hair mother cells II are
labelled in metaphase. It appears therefore that the hair mother cells II divides some-
what more rapidly than either the epidermal cells or the hair mother cells I.

Insects fixed at 165 min (Fig. 10) have some of the hair mother cells I divisions
labelled at metaphase and anaphase. In contrast, no metaphases of the proliferative
epidermal cells are yet labelled. The hair mother cell I mitosis is therefore somewhat
more rapid than the proliferative divisions.

Each of the differentiative divisions thus has a prophase of different and charac-
teristic length.

r ^Ha i r mother cell I

rt V
Q~) C/jHair mother cell/\ /v

o OO O

Vertical / \ / \ Horizontal
division d M f \ division

Accessory Accessory Tormogen Trlchogen
cell 1 cell 2

Fig. 6. Cell lineage of a hair.

Taken together these pieces of information suggest that the period intervening
between the end of S and the termination of the mitosis of the hair mother cell I is
about 3 h, then there is a period of DNA synthesis, which begins earlier in the
accessory mother cell than in hair mother cell II and ends only 2 h 15 min before
termination of the mitosis of the accessory mother cell and somewhat less than 3 h
prior to the end of cell division of the hair mother cell II. Accurate estimation of the
total length of this differentiative process is impossible from my data because of com-
plete asynchrony of the cell population. However, the interphases between mitoses of
these differentiating cells must be very short, of the order of 3 h, because very few
groups containing even one interphase are found.

DISCUSSION

The full degree of variation of cell cycles is now being appreciated (Cleaver, 1967);
even in the same organism at different stages of its life-history all phases of the cell
cycle can alter in length (Graham & Morgan, 1966). Care must therefore be taken in
arguing from one organism to another. Until more work is done on cell cycles in insects
it will not be possible to decide whether the time course of cell division in Oncopeltus
shares features with other insects.

The most striking characteristic of the cell cycle of Oncopeltus is the overlap of S
into a very long prophase. DNA synthesis in prophase has been described in other
organisms, for instance the embryonic neuroblasts of the grasshopper Chortophaga
(Gaulden, 1956) and the microsporocytes of Tradescantia (Moses & Taylor, 1955). In
the development of Schistocerca, although the neuroblasts show the overlap between
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prophase and S, the other embryonic nuclei incorporate label only in interphase
(S. A. Henderson, personal communication). In Oncopeltus the normal events of pro-
phase occur after 5 is completed and continue at a rapid rate. Active contraction of
chromosomes seems to be confined to the very beginning of prophase, thus rendering
the chromosomes visible as fine threads, and to the last 10 % (about 40 min) when the
chromosomes become discernable as individual organelles.

Cell separation is an important trigger for mitosis in the epidermis of Rhodnius
(Wigglesworth, 1964). One of its first effects would now seem to be DNA synthesis;
because in Oncopeltus, at least, where there is no Ga period, DNA synthesis is in-
timately linked with mitosis. Krishnakumaran, Oberlander & Schneiderman (1965)
have suggested that DNA synthesis might be a direct response to ecdysone. But
mitosis has been shown to be independent of ecdysone in the fat body of Rhodnius
(Wigglesworth, 1963). Moreover, activation of the cells is the first observable effect
of ecdysone (Wigglesworth, 1933) and occurs synchronously in all the epidermal cells.
Divisions are asynchronous and seem unlikely to be a direct response to a circulating
hormone which should affect all the cells evenly. Moreover Krishnakumaran, Berry,
Oberlander & Schneiderman (1967) themselves have now found evidence for the
independence of DNA synthesis from ecdysone.

The general course of mitotic events in Oncopeltus is similar to that in other insects.
Some days after the initiation of the metamorphic moult, mitoses begin and persist
for several days (Wigglesworth, 1940, 1948; Guillaume, 1961). They follow a pattern
as certain areas, in particular the intersegmental membranes, begin sooner and often
continue longer than other areas. Because of the large variation in growth of different
parts of the insect the cell cycle would be expected to vary considerably. In Oncopeltus
only the abdominal sternites and tergites have been studied, but within these regions
various degrees of growth occur; for example in the posterior margin of the third
sternite of females, which, owing to excessive cellular multiplication, expands over
the anterior part of the fourth sternite. Here there is evidence that the essential
features of the cell cycle remain the same as elsewhere on the sternites but that many
more, if not all, the daughter cells proceed to at least a second division.

In this study it was hoped to determine whether all cells in the epidermis of
Oncopeltus divide at the metamorphic moult; but unfortunately the tritiated thymidine
does not remain long enough in the insect for this to be discovered. However, on the
tergites where the cells increase more than 2 times, the same cells do not divide a
second time for 24 h, and cell division only lasts for about 40 h, it is quite possible
that every cell divides at least once—but this remains uncertain. Wigglesworth's
experiments with moulting unfed 5th-stage larvae of Rhodnius suggest that cell
division is not a prerequisite for metamorphosis. Here metamorphosis was accomplished
with almost no change in cell number, and very few divisions were seen (Wiggles-
worth, 1942). It is worth reiterating, moreover, that in both Rhodnius and Oncopeltus
the same bristle cells metamorphose to produce a different type of bristle without
DNA synthesis or divisions (Wigglesworth, 1933; Lawrence, 1966).

It is not surprising that the three types of differentiative divisions have their own
characteristic time courses. This seems to echo observations of Stebbins (1965), who
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studied similar systems in plants, that the phases of the cell cycle differ in each type
of division. In the case of hair mother cell I, the unique length of the prophase period
implies that these cells are different prior to the mitosis itself—a property which is
also apparent cytologically (Lawrence, 1966). The essential determinative process pre-
sumably occurs during the interphase (Gj) of the epidermal cell.

I am very grateful to Dr J. G. Kunkel and Dr J. Stewart for help with data analysis.
Dr Stewart is responsible for the derivation of the equations in the methods section. I thank
Professors D. Bodenstein, M. Locke and H. A. Schneiderman for the hospitality received in
their laboratories, and acknowledge financial support from the Commonwealth Fund and grant
G.M. 09960 of the U.S. Public Health, awarded to Dr Locke. Dr J. E. Cleaver and Dr J. G. M.
Shire have read the manuscript and suggested improvements.
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Fig. 7. Whole mount radioautograph of 5th-stage larva injected during proliferative
mitoses and fixed after 180 min. Some of the metaphases, anaphases and telophases
are labelled after this incubation period. Most labelled cells are in prophase.
Figs. 8A, B. Whole mount radioautograph of 5th-stage larva made during pro-
liferative cell divisions and fixed 180 min after injection. Metaphase (m) and telophase
(t) are pictured in focal plane of chromosomes (A) and the focal plane of grains (B).
These mitotic figures are lightly labelled in contrast to prophase (p) because they are in
the vanguard of the population of labelled cells.
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Fig. 9. Whole mount radioautograph of 5th-stage larva injected at 43 h after the
ecdysis and fixed 20 h later. The labelled cells are in interphase pairs (e.g. 1, 2, 3).
Dividing cells in prophase (p) and telophase (t) are unlabelled.
Figs, IOA, B. Whole mount radioautograph of 5th-stage larva injected during early
differentiative divisions and fixed 165 min later, A, in focal plane of nuclei; B, in focal
plane of grains. Accessory mother cell is in a late telophase (at) which is oriented
vertically to the surface plane of the cuticle and is labelled, as is the prophase of the
hair mother cell II (hllp), and hair mother cell I (hip). In contrast, a later prophase (p)
and a telophase (t) of proliferative cell divisions are unlabelled.
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