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Summary

The Drosophila genes fat (ft) and dachsous (ds) encode
large atypical cadherins that collaborate to coordinately

polarize cells in the plane of the epithelium (planar cell
polarity) and to affect growth via the Warts/Hippo pathway

[1–3]. Ft and Ds form heterodimeric bridges that convey
polarity information from cell to cell [4–7]. four-jointed (fj)

is a modulator of Ft/Ds activity that acts in a graded fashion
in the abdomen, eye, and wing [8–11]. Genetic evidence indi-

cates that Fj acts via Ds and/or Ft [4, 6–9, 12], and here we
demonstrate that Fj can act independently on Ds and on Ft.

It has been reported that Fj has kinase activity and can phos-
phorylate a subset of cadherin domains of both Ft and Ds

in vitro [13]. We have used both cell and in vitro assays to
measure binding between Ft and Ds. We find that phosphor-

ylation of Ds reduces its affinity for Ft in both of these

assays. By expressing forms of Ds that lack the defined
phosphorylation sites or have phosphomimetic amino acids

at these positions, we demonstrate that effects of Fj on wing
size and planar polarity can be explained by Fj phosphory-

lating these sites.

Results and Discussion

Genetic Data Indicate that Fj Can Act on Ds and Ft In Vivo
If the levels of Ft, Ds, or Fj are altered in clonal patches of cells,
the normal (genetically wild-type) cells nearby have their
polarity changed so that, in some cases, all hairs point in
toward the clones or, in other cases, outward away from
them. Extensive use of this experimental assay has given
insight into how these three molecules act to build planar
polarity [6–9, 14–16], but it has not been clear whether Fj
acts on Ds, on Ft, or on both molecules. We therefore made
clones that lacked endogenous Ft and Ds but also overex-
pressed ectoDs (UAS.ectoDs), an active form of Ds lacking
the intracellular domain [7]. These clones reversed the polarity
of hairs behind the clone (Figure 1A), but coexpression of
UAS.fj with UAS.ectoDs largely suppressed this repolarization
(Figure 1B). Here, because no Ft was present in the clones, Fj
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must have inhibited Ds and could not have acted via Ft. Over-
expression of ft (UAS.ft), in the absence of endogenous Ds and
Ft, caused a repolarization of hairs so that they pointed away
from the clone (Figure 1C), and in this case coexpression of
UAS.fj increased the range of repolarization (Figure 1D). There-
fore, because no Ds was present, Fj must have been acting on
Ft itself to promote its activity. Both ds2 ft2 and ds2 ft2 UAS.fj
clones do not repolarize the surrounding wild-type hairs [7],
arguing that Fj acts by changing the activity of Ds and Ft inside
the clones—and not by acting (for example, as a secreted
protein) directly on Ds and/or Ft in neighboring wild-type cells.
Modification of Ft or Ds inside the clone then presumably
alters the strength of Ft-Ds heterophilic interactions across
the clone boundary, leading to a change in the range of repo-
larization around the clone. These experiments demonstrate
that Fj can modulate the activity of both Ft and Ds in vivo.

Point Mutations in Fj Abrogate the Ability to Phosphorylate

Ft and Ds
All Fj proteins have a highly conserved region located at the C
terminus of the protein (see Figure S1A available online); in the
Drosophila Fj protein, this domain comprises amino acids 432
to 508. The region shows homology to a kinase-active site [17]
containing the essential aspartate residues required for kinase
function, as well as other conserved residues nearby. Ishikawa
et al. [13] mutated amino acids 490–492 of Fj, which includes
the putative Mn2+-binding site (D490), and found that this
protein could no longer phosphorylate Ft or Ds cadherin
domains and was nonfunctional in vivo. We mutated three
conserved aspartic acid residues to glutamine at the putative
active site (D454Q), the putative Mn2+-binding site (D490Q),
and at a more N-terminal position (D447Q) within the domain.
Mutation of any one of these three sites abolished the protein’s
ability to phosphorylate Ft and Ds cadherin domains in D.mel2
cells (Figures 1J and 1K; Figure S1B), but these mutant proteins
were still bound to Ds and Ft (Figures S1C and S1D) and were
localized, like the wild-type protein, in the Golgi (data not
shown). Furthermore, unlike the wild-type protein, these
mutated molecules were inactive in vivo, either in the presence
or in the absence of endogenous wild-type Fj protein (data not
shown; Figures 1E–1I). These results argue that the kinase
activity of Fj is essential for its function. By coimmunoprecipi-
tation, we detected physical interactions between two regions
of Fj and the cadherin repeats 1–5 of both Ft and Ds, again
consistent with Fj acting on both molecules (Figures S1E–S1G).

Fj Inhibits Binding of Ds to Ft
Ft and Ds can form heterodimers, intercellular bridges
conveying polarity information from cell to cell [4–7], and we
now tested whether phosphorylation of Ds and/or Ft by Fj
might regulate this heterodimerization. When Drosophila S2
cells were separately transfected with Ft and Ds and then
mixed together, they formed cell aggregates; Ds and Ft
appeared to stabilize each other’s localization at the cell
membrane (Figure 2A) [4–6]. We cotransfected Drosophila S2
cells with fj or GNT-fj, a Golgi-tethered form of the protein
that is more active in vivo [12], plus either ft or ds. fj was
expressed under the control of a Cu2+-inducible promoter,
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Figure 1. Fj Can Modulate the Activity of Both Ft

and Ds In Vivo

(A–I) Images of clones (outlined in red) in the

dorsal abdomen marked with the hair mor-

phology markers stc (A–D) or pwn (E–I). Arrows

indicate the direction and extent of hair repolari-

zation around the clones.

(A) ds2 ft2 UAS.ectoDs clones strongly repolarize

hairs behind the clone (100% of clones repolarize

with a maximum range of up to seven cells [n =

38]).

(B) Repolarization around ds2 ft2 UAS.ectoDs

UAS.fj clones is much reduced (48% of clones

show some repolarization with a range of one to

three cells [n = 48]).

(C) ds2 ft2 UAS.ft clones cause repolarization in

front of clones (64% of clones repolarize with

a maximum range of four cells [n = 25]).

(D) Coexpression of UAS.ft and UAS.fj in ds2 ft2

clones strengthens repolarization (95% of clones

repolarized with a maximum range of seven cells

[n = 39)).

(E) fj2 clones reverse hair polarity behind the

clone (11 of 39 clones, 0 reverse in front).

(F) Expression of UAS.fj in fj2 clones rescues the

mutant phenotype (and reverses hairs in front of

the clone, see [8]), 19 of 25 clones reverse in front,

0 reverse behind; similarly, 21 of 25 UAS.fj clones

in wild-type flies reverse in front, 0 reverse

behind—the comparison suggesting that UAS.fj

is strongly overexpressed.

(G–I) None of the mutated forms of fj rescue fj2,

the hairs still being reversed behind the clones

upon expression of UAS.fjD447Q (10 of 28 clones)

(G), UAS.fjD454Q (11 of 39 clones) (H), and

UAS.fjD490Q (12 of 29 clones) (I).

(J and K) Truncated forms of Ds and Ft (Ds1-

5sec-HA and Ft1-5sec-HA), consisting of the first

five cadherin repeats, show reduced mobility on

western blots, indicative of modification by phos-

phorylation [13] when coexpressed with wild-

type Fj in D.mel2 cells but not when coexpressed

with the three kinase mutants. This mobility shift

is reversed by treatment with phosphatase

(Figure S1B).
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whereas ft and ds were expressed under constitutive actin pro-
moters (Figure S2A). Without the addition of CuSO4, no detect-
able Fj was expressed (Figures 2A and 2F). We then measured
the amount of cell aggregation between these doubly trans-
fected cells and cells singly transfected with ft or ds.

Strong mutual stabilization of Ft and Ds at the interface
between cells occurred when no Fj was expressed (Figure 2A).
However, when fj or GNT-fj was coexpressed with ds, this
mutual stabilization of Ft and Ds was reduced (Figure 2B),
and fewer clumps of cells were recorded. To quantify the level
of binding between cells, we counted the percentage of Ft
cells in the population adhering to Ds cells and compared
these data with and without CuSO4 (6Fj expression) (Figures
2D and 2E). When fj was induced in ds-expressing cells, the
binding between ft- and ds-expressing
cells was reduced by 40% (Figure 2D).
The GNT-Fj form, which is not secreted
from cells, was at least as potent as
wild-type Fj in inhibiting Ds binding to
Ft (Figure 2D), consistent with Fj medi-
ating its effect in the Golgi [12], and not
at the cell surface.
No significant effect on Ft-Ds binding was observed when
either fj or GNT-fj was coexpressed with ft (Figure 2E). Both
the in vivo genetic evidence described above, along with the
observation that Ft cadherin domains can be phosphorylated
by Fj (Figure 1K; [13]), suggest that Fj might also act on Ft.
But if Fj acts on Ft to modulate its binding to Ds, our in vitro
assays failed to reveal it.

To determine whether it is the kinase activity of Fj that is
responsible for the inhibition of binding, we tested forms of
GNT-Fj that were mutated in the kinase domain. When each
one of the three mutant Fj proteins was expressed with ds in
the cell aggregation assay, they, unlike the wild-type protein,
had no significant effect on binding (Figure 2D). Furthermore,
stabilization of Ft and Ds at the membrane did not seem to



Figure 2. Fj Kinase Activity Inhibits Ds Binding to Ft

(A–C) Confocal images showing protein distribution revealed by immunofluorescence of S2 cell aggregates from example binding assays. Cells are labeled

for Ft (red), Ds-EGFP (green), and Fj (blue). Scale bar represents 10 mm. S2 cells were doubly transfected with pAct-ds-EGFP and pMK33B-GNT-fj (A and B)

or pAct-ds-EGFP and pMK33B-GNT-FjD454Q (C) and mixed with cells transfected with pAct-ft. Fj expression was induced by addition of 0.14 mM CuSO4

(B and C). Ft and Ds bind in neighboring cells, stabilizing each other’s localization at the cell surface and forming aggregates (A). GNT-Fj expression appears

to reduce the stabilization of Ft and Ds at cell contacts (B), whereas GNT-FjD454Q expression does not (C).

(D and E) Quantifications of Ft-Ds binding in cell aggregation assays. The percent of ft cells in the population that bind to ds cells was determined. pAct-ds

(D) or pAct-ft (E) was cotransfected with either empty pMK33B or pMK33B expressing fj, GNT-fj, GNT-fjD447Q, GNT-fjD454Q, or GNT-fjD490Q, and these cells

then mixed with cells singly transfected with either pAct-ft (D) or pAct-ds (E). Binding of cells in the absence of CuSO4 (light gray) was compared to binding in

the presence of CuSO4 (to induce Fj expression, dark gray) (0.14 mM in D and 0.7 mM in E) to determine whether Fj expression significantly altered binding.

Graphs show the mean from five separate experiments; error bars show standard deviation. Student’s t tests were applied (***p < 0.005 between pairs of

columns indicated by bars); NS, not significant.

(F) Western blot showing Ds-EGFP, Fj, and tubulin levels in S2 cell extracts in the presence or absence of GNT-Fj or GNT-FjD454Q. Note the efficacy of CuSO4.

(G) Coimmunoprecipitation of Ds1-5sec-HA with Ft1-5-Myc. D.mel2 cells were transfected with Ds1-5sec-HA and either pMK33B-GNT-Fj or kinase mutants.

Addition of CuSO4 (0.14 mM) induced GNT-Fj expression in secreting cells (bottom). Medium containing secreted Ds1-5sec-HA (INPUT:HA) was incubated

with cell lysate containing Ft1-5-Myc. Anti-Myc antibodies were used to pull down Ft1-5-Myc, and anti-HA was used to detect Ds1-5sec-HA. Control (right) is

a mock immunoprecipitation without Ft1-5-Myc expression. Note that in this experiment, because of variations in transfection efficiency, the Ds1-5sec-HA-

secreting cells transfected with wild-type GNT-Fj express a lower level of Fj than those transfected with mutant forms of GNT-Fj; however, even this lower

level of kinase-active Fj results in a significant reduction in the amount of Ds1-5sec-HA pulled down.

(H) Quantitation of five experiments as shown in (G). Amount of pull-down is shown in arbitrary units. Error bars show standard deviation. Wild-type Fj

significantly reduces pull-down of Ds1-5sec as compared to the three kinase mutant forms (p < 0.005).

See also Figure S2.
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Figure 3. Ds Phosphorylation Sites Mediate the

Effects of Fj on Ft-Ds Binding Affinity

(A) Diagram representing the structure of Ds

protein and localization of phosphorylation sites.

Ovals represent the cadherin domains of Ds. Dark

gray marks the cadherin domains containing

serines that were shown in S2 cells to be phos-

phorylated by Fj (CAD3 [S236], CAD6 [S561],

CAD9 [S881]), and light gray represents cadherin

domains containing conserved S/T residues that

have not been shown to be phosphorylated by

Fj [13].

(B) Cell aggregation assay with Ds phosphoryla-

tion mutants. pAct-ds-EGFP, dsS>Ax3-EGFP

(S236A, S561A, S881A), or dsS>Dx3-EGFP

(S236D, S561D, S881D) was cotransfected with

pMK33B empty vector or pMK33B-GNT-fj. The

percentage of Ft-expressing cells binding to

Ds-EGFP-expressing cells was determined.

Binding of cells in the absence of CuSO4 (light

gray) was compared to binding in the presence

of 0.14 mM CuSO4 (dark gray) to determine

whether Fj expression made a significant differ-

ence to binding (n = 3, error bars show standard

deviation). Student’s t tests were applied (***p < 0.005) and are indicated for each pair of columns (6Cu). In addition, of the first eight columns (four column

pairs), only column 4 (Ds + GNT-Fj, +Cu) shows a significant difference from column 1 (Ds, -Cu). The level of binding of Ft to DsS>Dx3-EGFP cells (columns 9

and 11) was significantly lower than to Ds-EGFP (column 1) and DsS>Ax3-EGFP (column 5) (p < 0.005). Note also that the level of binding of DsS>Dx3-EGFP cells

(column 9) is not as low as Ds-EGFP when GNT-Fj (column 4) is coexpressed (p < 0.05), suggesting that phosphorylation of the serine residues has a stronger

effect on the affinity of binding of Ds to Ft than mutation of these serine residues to aspartate.

(C) Western blot comparing levels of Ds-EGFP, DsS>Ax3-EGFP, and DsS>Dx3-EGFP expression in transfected S2 cells.

(D) Ratio of cell surface expression versus total levels of Ds-EGFP, DsS>Ax3-EGFP, and DsS>Dx3-EGFP in transfected S2 cells. The levels are not significantly

different.
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be altered by expression of GNT-fjD454Q (Figure 2C). Therefore,
the kinase activity of Fj is required in the Ds-expressing cells to
modify Ft-Ds binding.

Because Fj is known to phosphorylate Ds cadherin domains
(Figure 1J; [13]), its effects are most likely implemented via
changes in the mutual binding affinity of Ft and Ds. But they
could also be explained if the level or localization of Ds protein
was altered by fj expression. To test for this, we expressed
GNT-fj with ds-EGFP and found that Fj does not change the
level of Ds-EGFP protein by western blot (Figure 2F), indicating
that overall levels of Ds protein are not altered. Importantly, we
also determined that the level of Ds that reaches the cell
surface was not significantly altered (Figure S2B). These
results support the view that it is indeed the binding affinity
between Ft and Ds that is modified by Fj.

Finally, we carried out coimmunoprecipitation experiments
between fragments of Ds and Ft, known to bind to each other
in cell aggregation assays (Figure S2C), and confirmed again
that Fj kinase activity modulates Ft-Ds binding. A secreted
form of HA-tagged Ds that contains the first five cadherin
domains (Ds1-5sec), including amino acid S236, which is phos-
phorylated by Fj [13], was expressed in cells in the presence of
either Golgi-tethered GNT-fj or (as controls) forms of GNT-fj
mutated in the kinase domain. In this assay, expression of
GNT-fj significantly reduced the amount of Ds1-5sec that was
pulled down with Ft1-5 when compared to each of the three
GNT-fj kinase mutants (Figures 2G and 2H). Hence, Fj phos-
phorylation of Ds1-5 alters its binding affinity for Ft1-5.

Mutation of Phosphorylation Sites in Ds Alters Its Ability
to Bind to Ft

Ishikawa et al. [13] identified three conserved serines (S236,
S561, and S881) in Ds cadherin domains that can be phosphor-
ylated by Fj in vitro or in cell-based assays (Figure 3A). We
mutated these three serines in ds-EGFP to alanine to obviate
phosphorylation at these sites (dsS>Ax3-EGFP). Mutation of
these serines did not disrupt the levels of expression or cell-
surface localization (Figures 3C and 3D). Nor did it significantly
impact on the behavior of the protein: in the absence of
fj expression, dsS>Ax3-EGFP-expressing cells can still bind to
ft-expressing cells at a similar level as do wild-type ds-
EGFP-expressing cells (Figure 3B). But, in the cell aggregation
assay, dsS>Ax3-EGFP-expressing cells did not respond to
coexpression of GNT-Fj, unlike control ds-EGFP-expressing
cells (Figure 3B). These results argue that these three phos-
phorylation sites are instrumental in the modulation of Ft-Ds
binding affinity by Fj.

To make a phosphomimetic form of Ds, we mutated each of
these three serines to aspartates so as to add a negative
charge, much like phosphorylation itself does (dsS>Dx3-
EGFP). We first confirmed that DsS>Dx3-EGFP protein was
expressed at a similar level to Ds-EGFP and DsS>Ax3-EGFP
by western blot (Figure 3C) and that the level of protein at
the cell surface was similar (Figure 3D). However, we found
that dsS>Dx3-EGFP-expressing cells had a significantly
reduced level of binding to Ft cells when compared to wild-
type ds-EGFP- or dsS>Ax3-EGFP-expressing cells (Figure 3B),
although we noted that the reduction was not as strong
as when Ds-EGFP was modified by Fj, suggesting that the
S>D substitution is not a perfect phosphomimetic. Neverthe-
less, consistent with all of our findings, mimicking phosphory-
lation at these sites reduced binding to Ft. Coexpression of
GNT-Fj with dsS>Dx3-EGFP did not reduce binding further
(Figure 3B), indicating that if there were additional sites in Ds
that could be phosphorylated, they do not contribute signifi-
cantly to the regulation of Ft-Ds binding.

Phosphorylation of Ds Is Relevant In Vivo

To investigate the importance of the Ds phosphorylation
sites in vivo, we assayed the activity of the DsS>Ax3-EGFP



Figure 4. Ds Phosphorylation Sites Are Required

In Vivo for Fj to Modulate Growth and Planar

Polarity

(A–E0) Male adult wings. In (C)–(E0), all genotypes

include Ubx-flp to activate expression under

control of the Act5C promoter of transgenes

cloned into the vector pAttB-Act-FRT-polyA-

FRT. All images are of the same magnification.

To help with interpretation, we indicated removal

of fj simply as instanced here: (B) is one genotype

and (B0) is the same genotype without fj.

(A) Wild-type.

(B) dsUA071/ds38k.

(B0) dsUA071 fjd1 /ds38k fjP1.

(C) dsUA071/ds38k; Act-ds-EGFP/+.

(C0) dsUA071 fjd1 /ds38k fjP1; Act-ds-EGFP/+.

(D) dsUA071/ds38k; Act-dsS>Ax3-EGFP/+.

(D0) dsUA071 fjd1 /ds38k fjP1; Act-dsS>Ax3-EGFP/+.

(E) dsUA071/ds38k; Act-dsS>Dx3-EGFP/+.

(E0) dsUA071 fjd1 /ds38k fjP1; Act-dsS>Dx3-EGFP/+.

(F) Quantitation of wing blade area, relative to

wild-type. Twenty wings from male flies were

measured per genotype; error bars show stan-

dard deviation. Genotypes can be compared

directly with wings pictured above (A–E0 written

in columns). Student’s t tests were applied

(***p < 0.005, comparisons between columns

linked by bars). For (B) (ds2) and (B0) (ds2 fj2),

a small difference in wing size was found (*p <

0.05) only after measuring 40 wings. This differ-

ence in size suggests that fj can have a small

effect on wing size even in the absence of ds

activity, although the mechanisms are unclear.

(G–J0) Planar polarity is shown by the direction of

hairs on the ventral surface in adult wings. Arrows

indicate the direction hairs point. Light gray

arrows indicate swirls that are not found in wild-

type wings.

(G) Wild-type.

(H) dsUA071/ds38k; Act-ds-EGFP/+.

(H0) dsUA071 fjd1/ds38k fjP1; Act-ds-EGFP/+.

(I) dsUA071/ds38k.

(J) dsUA071/ds38k; Act-dsS>Ax3-EGFP/+.

(J0) dsUA071 fjd1/ds38k fjP1; Act-dsS>Ax3-EGFP/+.

Note that although ds-, dsS>Ax3-EGFP, and ds-

fj-, dsS>Ax3-EGFP wings appear similar, in the

absence of fj the planar polarity phenotype was

sometimes slightly stronger, with swirls more

often seen above vein 3. For quantification of

this polarity phenotype, see Figure S3K.
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and DsS>Dx3-EGFP proteins in flies. We generated transgenic
flies that expressed dsS>Ax3-EGFP and dsS>Dx3-EGFP, as well
as wild-type ds-EGFP, under the control of the Act5C
promoter. To ensure that all forms of Ds were expressed at
the same level, we used site-specific integration to insert the
transgenes at the same chromosomal location.

To assay the activity of the transgenes, we looked at their
effects on wing size, a parameter modulated by Fj, Ds, and
Ft through their regulation of the Warts/Hippo pathway [1, 3].
Loss of ds activity did not much alter wing area (Figure 4F)
but did affect wing shape (Figure 4B). However, uniform Ds
expression reduces the area of the wing [5, 18–20], which we
also see if we express Act-ds-EGFP uniformly in a ds back-
ground (Figures 4C and 4F). Notably, removal of fj from these
ds2, Act-ds-EGFP wings reduced their size dramatically
(Figures 4C0 and 4F; Figure S3B), even though removing fj
from ds2 wings had only a minor effect (Figures 4B0 and 4F;
Figure S3A). Hence, in the presence of ds activity, fj has
a potent and easily measurable effect on wing size.

Importantly, the wings of ds2, Act-dsS>Ax3-EGFP flies
(expressing the unphosphorylatable form of Ds) were indistin-
guishable in size and shape from those of ds2 fj2, Act-ds-EGFP
flies (Figures 4C0, 4D, and 4F), and their size was not further
altered if fj was removed (Figures 4D0 and 4F; Figure S3C).
When uniformly expressed, the phosphomimetic form of Ds
(DsS>Dx3-EGFP) also affected wing area (Figures 4E and 4F)
and was likewise insensitive to the presence of Fj (Figures 4E0

and 4F; Figure S3D). From these results, we conclude that the
effects of Fj on wing size in this assay depend on the three
key phosphorylation sites.
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Recent data suggest that steeply graded Fj distribution and,
consequently, steeply graded Ft-Ds activity promote growth
[3, 18, 20]. And, consistent with this, overexpression of evenly
expressed fj, which should tend to flatten a Ft-Ds gradient of
activity, decreases wing size [5, 11, 18–20]. Further, the reduc-
tion in wing size we now see in ds2 fj2, Act-ds-EGFP wings is
again consistent because Ds-EGFP is, presumably, evenly
distributed. Overall, our results are consistent with the hypoth-
esis that graded Fj activity (and hence graded Ft-Ds binding) is
a determinant of wing size.

We note that DsS>Dx3 might be expected to mimic the effect
of uniform Fj on the wing, which reduces wing size [18, 20],
and indeed, ds2, dsS>Dx3-EGFP wings are smaller than ds2,
ds-EGFP wings (Figures 4C, 4E, and 4F). However, ds2,
dsS>Dx3-EGFP wings are slightly larger than ds2, dsS>Ax3-
EGFP wings (Figures 4D–4F; Figure S3E), which mimic the
effect of loss of fj activity. A likely explanation for this differ-
ence in size is that in vivo, as in vitro, DsS>Dx3 binds less
strongly than DsS>Ax3 to Ft, resulting in reduced Ft/Ds-medi-
ated suppression of growth. Taken together, our data indicate
that the primary effect of Fj on wing size is mediated by modu-
lating the steepness of the Ft-Ds-binding gradient, with
a smaller contribution attributable to the effect of Fj on overall
strength of Ft-Ds binding.

We also studied planar polarity and found that our results
argue that the same three phosphorylation sites in Ds are
important for the planar polarity function of Fj. Ds-EGFP
expression almost completely rescued the polarity defects
seen in ds2 wings (Figures 4G–4I; Figure S3G–S3I and S3K).
Notably, in these wings (that lack graded ds expression),
Fj activity made a contribution to planar polarity patterning,
because its removal caused swirls (Figure 4H0; Figures S3H0

and S3K), indicating that, as in growth, Fj regulation of
Ft-Ds binding is required for planar polarity. Both the ds2,
Act-dsS>Ax3-EGFP and ds2, Act-dsS>Dx3-EGFP mutant wings
show swirls around veins 3 and 4, similar to ds2 fj2, Act-ds-
EGFP wings, consistent with a role for these phosphorylation
sites in regulating planar polarity. However, in these geno-
types, removal of fj causes a slight increase in the polarity
phenotype, with swirls now seen above vein 3 (Figures 4J
and 4J0; Figures S3J–S3K), indicating that in the context of
planar polarity, Fj can act either via an alternative mechanism
on Ds itself or via another molecule, for example Ft.

Overall, our results argue that Fj affects wing size via phos-
phorylation of Ds at the three identified residues. Furthermore,
these sites also act to mediate effects of Fj on planar polarity.

Conclusions

fj was first shown to interact with ds by Waddington [21], and
subsequent studies showed that it regulates the functions of
ds and ft [4, 6–9, 12]. Fj has recently been found to act in the
Golgi [12] and mediate the phosphorylation of a subset of
cadherin repeats of both Ft and Ds [13], but the function
in vivo of this phosphorylation was not known. Here we have
restricted our attentions largely to the action of Fj on Ds. We
show that phosphorylation of Ds by Fj reduces the binding
affinity of Ds for Ft, indicating that phosphorylation of Ds is
important in the regulation of Ft/Ds heterodimerization and
therefore of downstream consequences on growth and planar
polarity. Furthermore, we find that, in vivo, a specific set of
three phosphorylation sites in the Ds protein is required for
Fj to mediate effects (via Ds) on the regulation of wing size
and planar polarity. Our data additionally reveal that, in vivo,
Fj also acts via Ft, even in the absence of Ds, although we
have not found the mechanism. A possibility is that Fj phos-
phorylation of Ft promotes its binding to Ds, but we did not
detect this in our assay. In this context, note that it might
seem counterintuitive if phosphorylation of residues in Ft
were to increase binding and if phosphorylation of analogous
residues in Ds were to decrease binding. But, in any case,
characterizing how Ft and Ds interact with each other is central
to understanding how these giant cadherin molecules together
regulate growth and polarity of tissues.

Experimental Procedures

Molecular Biology

Constructs were generated via standard molecular biology techniques,

and mutagenized and polymerase chain reaction-amplified regions were

verified by sequencing. ds and ft constructs were expressed under control

of the Act5C promoter in both tissue culture experiments and transgenic

flies. Full-length ds was created from ds cDNA fragments (gift from M.

Noll) [22]. The untagged form lacks the final 303 aa because of a premature

stop codon in the original cDNA, which was corrected in the Ds-EGFP form.

Point mutations in the cadherin domains were introduced with QuikChange

Multi Site-Directed Mutagenesis kit (Stratagene). Full-length ft was a 22 kb

genomic fragment from BACR11D14, containing the entire coding

sequence. Ft1-5 and Ds1-5 contained the first five cadherin repeats,

followed by the complete transmembrane and cytoplasmic domains.

Ds1-5sec and Ft1-5sec were truncated after the first five cadherin domains,

and these constructs were C-terminally Myc-, HA-, GFP-, or RFP-tagged via

the Drosophila Gateway system. fj constructs were expressed under

upstream activating sequence (UAS) control [23] in transgenic flies, under

the copper-inducible metallothionein promoter in the vector pMK33B for

tissue culture experiments, and in the pENTR vector for the coimmunopre-

cipitation experiments in which they were additionally Myc tagged. The

Golgi-tethered forms were made by swapping the appropriate region of

the coding sequence into GNT-Fj [12].

Fly Strains

Alleles used are described in FlyBase [24]. Loss-of-function clones that

simultaneously express a protein under UAS control were generated by

heat shocking third instar larvae for 1 hr at 37�C.

The following genotypes were used for fj, ectoDs, and ft expression in ds ft

mutant clones:

y w Scer\FLP1hs.PS Scer\Gal4alphaTub84B.PL Avic\GFPScer\UAS.T:Hsap\

MYC,T:SV40\nls2; dsUA071 ft15 stc P{FRT(whs)}39/ Scer\GAL80alphaTub84B.PL

P{FRT(whs)}39; fjScer\UAS.cZa/ ftScer\UAS.cMa

y w Scer\FLP1hs.PS Scer\Gal4alphaTub84B.PL Avic\GFPScer\UAS.T:Hsap\

MYC,T:SV40\nls2; dsUA071 ft15 stc P{FRT(whs)}39/ Scer\GAL80alphaTub84B.PL

P{FRT(whs)}39; MRS/ ftScer\UAS.cMa

y w Scer\FLP1hs.PS Scer\Gal4alphaTub84B.PL Avic\GFPScer\UAS.T:Hsap\

MYC,T:SV40\nls2; dsUA071 ft15 stc P{FRT(whs)}39/ Scer\GAL80alphaTub84B.PL

P{FRT(whs)}39; fjScer\UAS.cZa/ dsecto.Scer\UAS

y w Scer\FLP1hs.PS Scer\Gal4alphaTub84B.PL Avic\GFPScer\UAS.T:Hsap\

MYC,T:SV40\nls2; dsUA071 ft15 stc P{FRT(whs)}39/ Scer\GAL80alphaTub84B.PL

P{FRT(whs)}39; MRS/ dsecto.Scer\UAS

The following genotype was used for fj expression in fj clones:

y w Scer\FLP1hs.PS; P{neoFRT}42D pwn fjd1/ P{neoFRT}42D Scer\

Gal80alphaTub84B.PL Rnor\CD2hs.PJ; UAS.X/ Scer\Gal4alphaTub84B.PL

where UAS.X means either a wild-type Fj sequence or one of the three

mutant forms of Fj under UAS control. To make simple fj2 clones, we

substituted UAS.X with a wild-type chromosome.

ds-EGFP and point mutants were subcloned into pAttB-Act-FRT-polyA-

FRT (derived from pAct-FRT-polyA-FRT [25]), and transgenes were inte-

grated into the same landing site (VK26 at 96F3 [26]) by BestGene. The

following genotypes were used:

y w Scer\FLP1Ubx.hs; ds38k /dsUA071 ; AttB{w+ ActP-FRT-polyA-FRT-

dsX-EGFP}/+

y w Scer\FLP1Ubx.hs; ds38k fjP1/ dsUA071 fjd1; AttB{w+ ActP-FRT-polyA-

FRT-dsX-EGFP}/+

where dsX refers to wild-type ds or one of the ds point mutants.
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Histology and Antibodies

Abdominal cuticles were dissected and mounted in Hoyer’s medium, and

extended-focus images were generated with Helicon Focus (Heliconsoft).

Adult wings were mounted in GMM. Drosophila S2 cells were fixed in 2%

paraformaldehyde and washed in phosphate-buffered saline (PBS) 0.1%

Triton X-100 prior to immunolabeling. Primary antibodies used for histology

were rat anti-Fj [12], rabbit anti-Ds [6], chicken anti-GFP (Chemicon),

mouse monoclonal anti-Fmi (Drosophila Studies Hybridoma Bank) (Usui

et al. [28]), and a rat serum against the intracellular domain of Ft, which

was generated with a His-tagged fusion protein corresponding to amino

acids 4665–4859. Secondary antibodies used were anti-Rb Cy2, RRX and

Cy5, anti-Chicken FITC (Jackson), anti-Rat A568, and anti-mouse A568

(Molecular Probes).
Cell Culture

Drosophila S2 cells were grown in Schneider’s medium (GIBCO) with fetal

calf serum and transfected with Effectene (QIAGEN). Drosophila D.mel-2

cells were grown in ExpressFive SFM medium (Invitrogen) with L-glutamine

and antibiotics and were transfected with Cellfectin (Invitrogen).
Cell Aggregation Assay

For the cell aggregation assay, S2 cells were transfected with pAct-ft or

pAct-ds (or ds-EGFP) along with pMK33B constructs expressing forms

of fj. 2.5 3 105 cells from the same transfection were split into separate

wells of a nonadherent 24-well plate. CuSO4 was added to one well for

16 hr to induce Fj expression. 2.5 3 105 cells singly transfected with ft

or ds were added to the doubly transfected cells, rotated on a platform

(100 rpm, 2 hr), transferred to a glass coverslip, and allowed to adhere

for 2 hr, followed by immunolabeling of cell aggregates. Binding rates

were determined by counting the percentage of ft-expressing cells in

the population binding to ds-expressing cells (>200 Ft cells counted per

coverslip; counting was done blind). Binding rate can vary depending

on transfection frequency, so we compared the binding rates between

cells from the same transfection but with one set of cells induced to

express Fj. A reduction in binding was seen over a range of CuSO4

concentrations (0.07–0.7 mM) when Fj was expressed with Ds but not

Ft. Graphs show averages of at least three separate experiments.

FLAG-tagged Flamingo (Fmi) [27], a cadherin-containing protein that will

bind homophilically [28], was used as a control in cell aggregation assays.

Assays were also carried out to test interactions between tagged Ds1-5

and Ft1-5. Images are averages of three confocal sections taken on an

Olympus FV1000 confocal microscope and processed in ImageJ and

Photoshop.
Cell Surface Staining

To stain for Ds specifically at the cell surface, we immunolabeled cells

expressing Ds-EGFP in the absence of detergent with an anti-Ds primary

antibody raised against the extracellular domain of the protein [6] followed

by an RRX-conjugated secondary antibody. Cells were then labeled with

anti-GFP and secondary antibodies in the presence of detergent to label

total Ds. Images of cells were collected on the same confocal settings.

Fluorescence intensity of cell surface Ds and total Ds was measured for

individual cells with Volocity (Perkin Elmer). Forty to fifty cells were

measured in each experiment and averaged. Student’s t tests were per-

formed on at least three separate experiments to test significance.
Coimmunoprecipitations and Western Blotting

Transfected D.mel2 cells were harvested 24–48 hr after transfection,

washed with cold PBS, and lysed (50 mM HEPES [pH 7.4], 100 mM NaCl,

0.5% NP40, 10% glycerol or 50 mM Tris-HCl [pH 7.4], 150 mM NaCl, 1 mM

EDTA, and 1% Triton X-100, plus protease inhibitors). For western blots,

rat or rabbit anti-Fj [12], mouse anti-GFP (Abcam), mouse anti a-tubulin

DM1A (Sigma), mouse anti-Myc (Santa Cruz), mouse anti-HA (Roche), and

secondaries conjugated to horseradish peroxidase (Dako) were used.

Immunoprecipitations were carried out with mouse anti-Myc, and pulled-

down proteins were detected by western blotting with anti-HA. For coimmu-

noprecipitation between Ds1-5sec and Ft1-5, media was collected from

cells expressing Ds1-5sec after 48 hr and mixed with lysate from cells

expressing Ft1-5. The cells expressing Ds1-5sec were also cotransfected

with pMK33B-GNT-fj or kinase mutants to study the effect of phosphoryla-

tion of Ds on binding to Ft (because GNT-Fj is retained in the cell, it should

not interfere with Ft-Ds binding in the lysate).
Supplemental Information

Supplemental Information includes three figures and can be found with this

article online at doi:10.1016/j.cub.2010.03.056.
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